Multiplot: drawing several plots on one page ============================================ The `Multiplot` object is basically a layout of several figures where all drawn elements are linked together so that selecting an object in one plot selects this object on all plots, except for 2D representations (`PrimitiveGroup`) and `Graph2D` objects. How to draw a Multiplot ? ------------------------- 1. **Import the required packages** .. code-block:: python # Required packages import random import plot_data 2. **Create Data** In order to draw a Multiplot with random values, build a random vector of samples (stored as Python `dict`) with different attributes. Here 4 float attributes (`mass`, `length`, `speed` and `power`), 1 integer attribute (`rank`) and 1 discrete attribute (`shape`) are chosen to describe each sample. .. code-block:: python # Vector construction elements = [] SHAPES = ['round', 'square', 'triangle', 'ellipse'] for i in range(500): elements.append({"mass": random.uniform(0, 10), "length": random.uniform(0, 100), "speed": random.uniform(0, 3.6), "shape": random.choice(SHAPES), "rank": random.randint(1, 20), 'power': random.gauss(0, 3)}) 3. **Build all plots to draw in the Multiplot** .. code-block:: python # ParallelPlot parallelplot = pld.ParallelPlot(axes=['mass', 'length', 'speed', 'shape', 'rank', 'power']) # Scatterplots mass_vs_length = pld.Scatter(x_variable='mass', y_variable='length') shape_vs_rank = pld.Scatter(x_variable='shape', y_variable='rank') # 2D representation drawing_2d = pld.PrimitiveGroup(primitives=[pld.Rectangle(0, 0, 12, 24), pld.Circle2D(12, 24, 5)]) histogram_power = pld.Histogram(x_variable='power') histogram_speed = pld.Histogram(x_variable='speed') # Creating the multiplot plots = [parallelplot, mass_vs_length, shape_vs_rank, drawing_2d, histogram_power, histogram_speed] 4. **Build a Multiplot with all these plots** .. code-block:: python # Points sets creation as an example point_families=[ pld.PointFamily('rgb(25, 178, 200)', [1,2,3,4,5,6,7]), pld.PointFamily('rgb(225, 13, 200)', [10,20,30,41,45,46,47]), pld.PointFamily('rgb(146, 178, 78)', [11,21,31,41,25,26,27]) ] multiplot = pld.MultiplePlots( plots=plots, elements=elements, initial_view_on=True ) Once done, the figure can be displayed with the following command line : .. code-block:: python pld.plot_canvas(plot_data_object=multiplot, canvas_id='my_mulitplot') .. raw:: html Multiplot Features ------------------ - All features available in alone figures are available in the Multiplot layout, - Cross selection between figures is available, - One can reorder figures by clicking on `Resize Figures` , - One can select several lines with several mouse click by keeping pressed `Ctrl` key, - One can reset the view of the mouse hovered plot by pressing `Ctrl + Space`, - One can reset the whole figure by pressing `Ctrl + Shift + Left Click`. How to write a method to draw a Multiplot in a DessiaObject ? ------------------------------------------------------------- For the pendulum example, a Multiplot can be designed for the `PendulumDOE` class to draw all relevant figures in one html page. As for other plots, a decorator `@plot_data_view` is added for a future platform usage. 1. **Before coding the Multiplot method, some re-arrangements need to be done in PendulumDOE class for minimizing the amount of produced data** .. code-block:: python class PendulumDOE(Dataset): : : : # To build only one vector elements def _to_sample(self): return [{ "length": pendulum.length, "g": pendulum.g, "speed": pendulum.max_speed, "period": pendulum.period, } for pendulum in self.dessia_objects] # To draw all pendulums def _to_drawings(self): cmap = colormaps["jet"](npy.linspace(0, 1, len(self.dessia_objects))) return sum([pendulum.draw(Color(*(cmap[i][:-1]))).primitives for i, pendulum in enumerate(self.dessia_objects)], []) def _scatter_speed_period(self, elements = None): tooltip = pld.Tooltip(["length", "g"]) return pld.Scatter(x_variable="period", y_variable="speed", tooltip=tooltip, elements=elements) def _parallel_plot(self, elements = None): return pld.ParallelPlot(axes=["g", "length", "period", "speed"], elements=elements) def _histogram(self, elements = None): return pld.Histogram(x_variable="speed", graduation_nb=20, elements=elements) @plot_data_view("max_speed") def scatter_speed_period(self, reference_path: str = "#"): return self._scatter_speed_period(elements=self._to_sample()) @plot_data_view("parallelplot") def parallel_plot(self, reference_path: str = "#"): return self._parallel_plot(elements=self._to_sample()) @plot_data_view("histogram") def histogram(self, reference_path: str = "#"): return self._histogram(elements=self._to_sample()) @plot_data_view("draw") def draw(self): return pld.PrimitiveGroup(primitives=self._to_drawings()) 2. Write the **Mutliplot** method .. code-block:: python class PendulumDOE(Dataset): : : : @plot_data_view("Multiplot") def multiplot(self, reference_path: str = "#"): scatter_plot = self._scatter_speed_period() y_vs_t_curves = self.all_y_vs_time() parallel_plot = self._parallel_plot() histogram = self._histogram() draw = self.draw() plots = [scatter_plot, parallel_plot, histogram, draw, y_vs_t_curves] elements = self._to_sample() return pld.MultiplePlots(elements=elements, plots=plots, name="Multiple Plot") Once done, the figure can be displayed with the following command line : .. code-block:: python multiplot = pendulum_doe.multiplot() pld.plot_canvas(plot_data_object=multiplot, canvas_id='my_multiplot') .. raw:: html